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Abstract

We consider the execution of portfolio transactions with the aim of
minimizing a combination of volatility risk and transaction costs arising
from permanent and temporary market impact. For a simple linear
cost model, we explicitly construct the e�cient frontier in the space of
time-dependent liquidation strategies, which have minimum expected
cost for a given level of uncertainty. This analysis yields a number
we call the \half-life" of a trade, the natural time for execution in the
absence of exogeneous time constraints. We also construct optimal
strategies for trading through scheduled news events such as earnings
announcements.
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This paper concerns the optimal execution of portfolio transactions,
transactions that rebalance portfolio positions over a speci�ed period of
time.1 Bertsimas and Lo (1998) de�ne best execution as the dynamic trad-
ing strategy that provides the minimum expected cost of trading over a �xed
period of time, and they show that in a variety of circumstances one can �nd
such a strategy by employing a dynamic optimization procedure. This paper
works in the more general framework of maximizing the expected utility of
trading revenue, where utility is measured as a certainty equivalent equal to
the expected cost of trading plus a constant times the variance of cost.

We study variance of trading cost in optimal execution because it �ts
with the intution that a trader's utility should �gure in the de�nition of
optimal in \optimal execution". For example, in trading a highly illiquid,
volatile security, there are two extreme strategies: trade everything now at
a known, but high cost, or trade in equal sized packets over a �xed time at
relatively lower cost. The latter strategy has lower expected cost but this
comes at the expense of greater uncertainty in �nal revenue. How to evaluate
this uncertainty is partly subjective and a function of the trader's tolerance
for risk. All we can do is insist that for a given level uncertainty, cost be
minimized. This idea extends to a complete theory of optimal execution that
includes an e�cient frontier of optimal execution strategies (Section 2).

The framework of risk in execution yields several important results con-
sistent with intuition. For example, it is evident that all else equal, a trader
will choose to execute a block of an illiquid security less rapidly than a a
liquid security. While this seems obvious, we show that a model that ig-
nores risk does not have this property: without enforcing a strictly positive
penalty for risk, one cannot produce models that trade di�erently across the
spectrum of liquidity.2

The incorporation of risk into the study of optimal execution does not
come without cost. First, in order to produce tractable analytic results,
we are forced to work largely in the framework of price dynamics that are

1This general framework arises in market microstructure theory, but with a di�erent
purpose in mind. The uninformed discretionary trader trades an exogenous endowment
over an exogenously speci�ed amount of time to maximize pro�ts (Admati and Peiderer
1988); the informed strategic trader trades over multiple periods on information not widely
available, again to maximize pro�ts (Kyle 1985).
In both cases, the literature focuses on the link between the trader and the market

maker and a theory is produced to predict the market clearing price of a security at each
period, and study the mechanics of price formation. Thus, a trader's optimal strategy is
used as a means to study price formation in markets, not as an object of interest in itself.

2Bertsimas and Lo (1998) discuss the possibility of incorporating risk into the objective
function but do not provide a concerete model.
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an arithemetic random walk with independent increments. We obtain our
results using static optimization procedures which we show lead to glob-
ally optimal trading trajectories. That is, optimal trading paths may be
determined in advance of trading. Only the composition of the portfolio
and the trader's utility function �gure in the trading path. The fact that a
static strategy can be optimal even when a trader has the option to dynam-
ically change his trading mid-course is a direct result of the assumptions of
independence of returns3 and symmetry of the penalty function for risk.4

As is well known that price movement along di�erent horizons exhibit
serial correlation (Roll 1984), that market conditions change, and that some
participants possess private information (Bertsimas and Lo 1998), one may
question the usefulness of results that obtain strictly in an independent-
increment framework. Moreover, as trading is known to be a dynamic pro-
cess, our conclusion that optimal trading strategies can be statically deter-
mined calls for critical examination.

We regard our statically optimal trading strategies as a benchmark for
comparison against dynamic strategies. Considering static strategies as
strategies that ignore the arrival of new, possibly relevant information, we
ask what gains are available to strategies that incorporate all relevant infor-
mation. In Section 4 we investigate the extent of those gains, to assess how
close optimal static strategies are to being globally optimal.

We identify three types of information that are potentially of interest.
First there is serial correlation, and drift. We demonstrate that the marginal
improvement available by explicitly incorporating this information into trad-
ing strategies is small and, more importantly, independent of portfolio size.
Therefore, as portfolio sizes increase, the percentage gains possible decrease
proportionally.5 Moreover, in Appendix B, we argue that it is computation-

3This is well known in the theory of optimal control (Bertsekas 1976).
4An interesting deviation from the symmetric penalty function was communicated to

us by Ferstenberg, Karchmer and Malamut at ITG Inc. They argue that opportunity cost
is a subjective quantity that is measured di�erently by di�erent traders. Using a trader-
de�ned cost function g, they de�ne opportunity costs as the expected value of g applied
to the average execution price obtained by the trader relative to the benchmark price.
They assume that risk-averse traders will use a convex function g that is not symmetric in
the sense that there is a strictly greater penalty for under performance than for the same
level of outperformance. They show that in this setting, the optimal execution strategy
relative to g not only depends on the time remaining, but also on the performance of the
strategy up to the present time, and the present price of the security. In particular, this
means that in their setting, optimal strategies are dynamic.

5This is precisely true for a linear transaction cost model, and approximately true for
more general models. We will explain the exact meaning of this later. Also, it is fair
to point out that this result is, in fact, implicit the results of Bertsimas and Lo (1998).
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ally extremely di�cult to extend the methods of Bertsimas and Lo (1998)
to include risk aversion in optimal execution strategies with underlying se-
curities that exhibit serial correlation.

In Section 4.3 we examine the impact of scheduled news events on op-
timal execution strategies. There is ample evidence that anticipated news
announcements, depending on their outcome, can have signi�cant tempo-
rary impact on the parameters governing price movements.6 We work in a
simple extension of our static framework by assuming that the security again
follows an arithmetic random walk, but at a time known at the beginning
of trading an uncorrelated event will determine material shift in price dy-
namics (e.g., an increase or decrease in volatility). In this context we show
that optimal strategies are piecewise static.

To be precise, we show that the optimal execution strategy entails fol-
lowing a static strategy up to the moment of the event, followed by another
static strategy that can only be determined once the outcome of the event
is known. It is interesting to note that the static strategy one follows in the
�rst leg is in general not the same strategy one would follow in the absence
of information concerning the event.

Finally, we note that any optimal execution strategy is vulnerable to
unanticipated events. If such an event occurs during the course of trading
and causes a material shift in the parameters of the price dynamics, then
indeed a shift in the optimal trading trajectory must also occur. However, if
one makes the simplifying assumption that all events are either \scheduled"
or \unanticipated", then one concludes that optimal execution is always a
game of static trading punctuated by shifts in trading strategy that adapt
to material changes in price dynamics. If the shifts are caused by events
that are known ahead of time, then optimal execution bene�ts from precise
knowledge of the possible outcomes of the event (as we show in Section 4).

Moreover, those results suggest that a trading strategy built to take advantage of serial
correlations will essentially be a combination of a \correlation free" strategy and a \shifting
strategy" that moves trades from one period to the next based on information available in
last period's return. Therefore we argue that by ignoring serial correlation we a) preserve
the main interesting features of the analysis, and b) introduce virtually no bias away from
the \truly optimal" solutions.

6The theoretical and empirical literature on this subject is extensive. For a theoretical
treatment, see Brown, Harlow, and Tinic (1988), Easterwood and Nutt (1999), Kim and
Verrecchia (1991), and Ramaswami (1999). For empirical studies concerning earnings
announcements see Patell and Wolfson (1984) for changes in mean and variance of intraday
prices, and Krinsky and Lee (1996) and Lee, Mucklow, and Ready (1993) for changes in
the bid-ask spread. For additional studies concerning anticipated news announcements,
see Charest (1978), Kalay and Loewentstein (1985), and Morse (1981).
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If not, then the best approach is to be actively \watching" the market for
such changes, and react swiftly should they occur. One approximate way
to include such completely unexpected uncertainty into our model is to
arti�cially raise the value of the volatility parameter.

Having indicated why we work in the framework we have chosen, we
now outline some of our results. First, we obtain closed form solutions for
trading optimal trading strategy for any level of risk aversion. We show that
this leads to an e�cient frontier of optimal strategies, where an element of
the frontier is represented by a strategy with the minimal level of cost for its
level of variance of cost. The structure of the frontier is of some interest. It is
a smooth, convex function, di�erentiable at its minimal point. The minimal
point is what Bertsimas and Lo (1998) call the \naive" strategy because it
corresponds to trading in equally sized packets, using all available trading
time equally. It turns out that viewing a strategy as an element of the
e�cient frontier, as opposed to in isolation, yields certain interesting insights
(Section 3). For example, the di�erentiability of the frontier at its minimum
point leads to the conclusion that one can obtain a �rst-order reduction in
variance of trading cost at the expense of only a second order increase in
cost by trading a strategy slightly away from the globally minimal strategy.
This leads to the idea that the curvature of the frontier at its minimum
point that is a measure of liquidity of the security.

Another rami�cation of our study is that for all levels of risk-aversion
except risk-neutrality, optimal execution trades have a \half-life" which falls
out of our calculations. A trade's half-life is independent of the actual
speci�ed time to liquidation, and is a function of the security's liquidity and
volatility and the trader's level of risk aversion. As such, we regard the half-
life as an idealized time for execution, and perhaps a guide to the proper
amount of time over which to execute a transaction. If the speci�ed time to
liquidation is short relative to the trade's half-life, then one can expect the
cost of trading to be dominated by transaction costs. If the time to trade is
long relative to its half-life, then one can expect most of the liquidation to
take place well in advance of the limiting time.

In two Appendices, we consider extensions and add some technical detail.
In Appendix A, we extend our analysis to multiple asset portfolios and again
produce closed form expressions for optimal trading paths. In this case,
not surprisingly, the correlation between assets �gures strongly in optimal
trading behavior. In Appendix B, we support the heuristic arguments of
Section 4.2 by a detailed dynamical programming calculation.
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1 The Trading Model

This section de�nes what a trading strategy is and lays out the price dynam-
ics we will study. We start with a formal de�nition of a trading strategy for
execution of a sell program consisting of liquidating a single security. The
de�nition and results for a buy program are completely analogous.

1.1 The De�nition of a Trading Strategy

Suppose we hold a block of X units of a security7 that we want to completely
liquidate before time T . We divide T into N intervals of length � = T=N ,
and de�ne the discrete times tk = k� , for k = 0; : : : ; N . We de�ne a trading

trajectory to be a list x0; : : : ; xN , where xk is the number of units that we
plan to hold at time tk. Our initial holding is x0 = X, and liquidation at
time T requires xN = 0.8

We may equivalently specify a strategy by the \trade list" n1; : : : ; nN ,
where nk = xk�1�xk is the number of units that we will sell between times
tk�1 and tk. Clearly, xk and nk are related by

xk = X �
kX

j=1

nj =

NX
j=k+1

nj ; k = 0; : : : ; N:

We consider more general programs of simultaneously buying and selling
several securities in Appendix A. For notational simplicity, we have taken
all the time intervals to be of equal length � , but this restriction is not
essential. Although we shall not discuss it, in all our results it is easy to
take the continuous-time limit N !1, � ! 0.

We de�ne a \trading strategy" to be a rule for determining nk in terms
of information available at time tk�1. Broadly speaking we distinguish two
types of trading strategies: dynamic and static. Static strategies are de-
termined in advance of trading, that is the rule for determining each nk
depends only on information available at time t0. Dynamic strategies, con-
versely, depend on all information up to and including time tk�1.

7To keep the discussion general we will speak of units of a security. Speci�cally we
have in mind shares of stock, futures contracts and units of foreign currency.

8A trading trajectory may be thought of as either the ex-post realized trades resulting
from some process, or as a plan concerning how to trade a block of securities. In either
case, we may also consider rebalancing trajectories by requring x0 = X (initial position)
and x1 = Y (new position), but this is formally equivalent to studying trajectories of the
form x0 = X � Y and xN = 0.
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1.2 Price Dynamics

Suppose that the initial security price is S0, so that the initial market value of
our position is XS0. The security's price evolves according to two exogenous
factors: volatility and drift, and one endogenous factor: market impact.9

Volatility and drift are assumed to be the result of market forces that occur
randomly and independently of our trading. As market participants begin
to detect the volume we are selling (buying) they naturally adjust their bids
(o�ers) downward (upward).10

We distinguish two kinds of market impact. Temporary impact refers to
temporary imbalances in supply in demand caused by our trading leading
to temporary price movements away from equilibrium. Permanent impact
means changes in the \equilibrium" price due to our trading, which remain
at least for the life of our liquidation.

We assume that the security price evolves according to the discrete arith-
metic random walk

Sk = Sk�1 + ��1=2�k � � g
�nk
�

�
; (1)

for k = 1; : : : ; N . Here � represents the volatility of the asset, the �j are
draws from independent random variables each with zero mean and unit
variance, and g(v) is a function of the average rate of trading v = nk=�
during the interval tk�1 to tk. In Equation (1) there no drift term. We
interpret this as the assumption that we have no information about the
direction of future price movements.11

1.3 Temporary market impact

The intuition behind temporary market impact is that a trader plans to
sell a certain number of units nk between times tk�1 and tk, but may work
the order in several smaller slices to locate optimal points of liquidity. If
the total number of units nk is su�ciently large, the execution price may

9In Section 4 we will consider a fourth exogenous element: parameter shifts, sudden
changes in the governing parameters of the price dynamics.

10Our discussion largely reects the work of Kraus and Stoll (1972), and the subsequent
work of Holthausen, Leftwich, and Mayers (1987, 1990), and Chan and Lakonishok (1993,
1995). See also Keim and Madhavan (1995, 1997).

11Over long-term \investment" time scales or in extremely volatile markets, it is impor-
tant to consider geometric rather than arithmetic Brownian motion; this corresponds to
letting � in (1) scale with S. But over the short-term \trading" time horizons of interest
to us, the total fractional price changes are small, and the di�erence between arithmetic
and geometric Brownian motions is negligible.
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steadily decrease between tk�1 and tk, in part due to exhausting the supply
of liquidity at each successive price level. We assume that this e�ect is
short-lived and in particular, liquidity returns after each period and a new
equilibrium price is established.

We model this e�ect by introducing a temporary price impact function
h(v), the temporary drop in average price per share caused by trading at
average rate v during one time interval. Given this, the actual price per
share received on sale k is

~Sk = Sk�1 � h
�nk
�

�
; (2)

but the e�ect of h(v) does not appear in the next \market" price Sk.
12

The functions g(v) in (1) and h(v) in (2) may be chosen to reect any
preferred model of market microstructure, subject only to certain natural
convexity conditions.

1.4 Capture and cost of trading trajectories

We now discuss the pro�ts resulting from trading along a certain trajectory.
We de�ne the capture of a trajectory to be the full trading revenue upon
completion of all trades.13 This is the sum of the product of the number of
units nk that we sell in each time interval times the e�ective price per share
~Sk received on that sale. We readily compute

NX
k=0

nk ~Sk = X S0 +

NX
k=1

�
��1=2 �k � �g

�nk
�

��
xk �

NX
k=1

nkh
�nk
�

�
: (3)

The �rst term on the right hand side of (3) is the initial market value of our
position; each additional term represents a gain or a loss due to a speci�c
market factor.

The �rst term of this type is
P

��1=2�kxk, representing the total e�ect of
volatility. The permanent market impact term �P �xkg(nk=�) represents
the loss in value of our total position, caused by the permanent price drop
associated with selling a small piece of the position. And the temporary
market impact term,

P
nkh(nk=�), is the price drop due to our selling,

acting only on the units that we sell during the kth period.

12This model is, in e�ect, completely general and we claim no special insight into the
workings of market impact in this section.

13Due to the short time horizons we consider, we do not include any notion of carry or
time value of money in this discussion.
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The total cost of trading is the di�erence XS0 �
P

nk ~Sk between the
initial book value and the capture. This is the standard ex-post measure of
transaction costs used in performance evaluations, and is essentially what
Perold (1988) calls implementation shortfall.

In this model, prior to trading, implementational shortfall is a random
variable. We write E(x) for the expected shortfall and V (x) for the variance
of the shortfall. Given the simple nature of our price dynamics, we readily
compute

E(x) =

NX
k=1

�xk g
�nk
�

�
+

NX
k=1

nk h
�nk
�

�
(4)

V (x) = �2
NX
k=1

�x 2
k : (5)

The units of E are dollars; the units of V are dollars squared.
The distribution of shortfall is exactly Gaussian if the �k are Gaussian;

in any case if N is large it is very nearly Gaussian.
The rest of this paper is devoted to �nding trading trajectories that

minimize E(x) + �V (x) for various values of �. We will show that for
each value of � there corresponds a unique trading trajectory x such that
E(x) + �V (x) is minimal.

1.5 Linear impact functions

Although our formulation does not require it, computing optimal trajecto-
ries is signi�cantly easier if we take the permanent and temporary impact
functions to be linear in the rate of trading.

For linear permanent impact, we take g(v) to have the form

g(v) =  v; (6)

in which the constant  has units of ($/share)/share. With this form, each
n units that we sell depresses the price per share by n, regardless of the
time we take to sell the n units; Eq. (1) readily yields

Sk = S0 + �
kX

j=1

�1=2�j �  (X � xk):
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Then summing by parts, the permanent impact term in (4) becomes

NX
k=1

�xk g
�nk
�

�
= 

NX
k=1

xknk = 
NX
k=1

xk(xk�1 � xk) =

= 1
2

NX
k=1

�
x 2
k�1 � x 2

k �
�
xk � xk�1

�2�
= 1

2X
2 � 1

2

NX
k=1

n 2
k :

Similarly, for the temporary impact we take

h
�nk
�

�
= � sgn(nk) +

�

�
nk; (7)

where sgn is the sign function.
The units of � are $=share, and those of � are ($=share)=(share=time).

A reasonable estimate for � is the �xed costs of selling, such as half the
bid-ask spread plus fees. It is more di�cult to estimate � since it depends
on internal and transient aspects of the market microstructure. It is in this
term that we would expect nonlinear e�ects to be most important, and the
approximation (7) to be most doubtful.

The linear model (7) is often called a quadratic cost model because the
total cost incurred by buying or selling n units in a single unit of time is

nh
�n
�

�
= �jnj + �

�
n2:

With both linear cost models (6,7), the expectation of impact costs (4)
becomes

E(x) = 1
2X

2 + �

NX
k=1

jnkj + ~�

�

NX
k=1

n 2
k (8)

in which

~� = � � 1
2�:

Clearly, E is a strictly convex function as long as ~� > 0. Note that if the nk
all have the same sign, as would typically be the case for a pure sell program
or a pure buy program, then

P jnkj = jXj.
To illustrate, let us compute E and V for linear impact functions for the

two most extreme trajectories: sell at a constant rate, and sell to minimize
variance without regard to transaction costs.
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Minimum impact The most obvious trajectory is to sell at a constant
rate over the whole liquidation period. Thus, we take each

nk =
X

N
and xk = (N � k)

X

N
; k = 1; : : : ; N: (9)

From (4,8) we have

E = 1
2XTg

�
X

T

��
1� 1

N

�
+ X h

�
X

T

�
(10)

= 1
2X

2 + �X +
�
� � 1

2�
� X2

T
;

and from (5),

V = 1
3�

2X2T

�
1� 1

N

��
1� 1

2N

�
: (11)

This trajectory minimizes total expected costs, but the variance may be
large if the period T is long. As the number of trading periods N ! 1,
v = X=T remains �nite, and E and V have �nite limits.

Minimum variance The other extreme is to sell our entire position in
the �rst time step. We then take

n1 = X; n2 = � � � = nN = 0; x1 = � � � = xN = 0; (12)

which give

E = X h

�
X

�

�
= �X + �

X2

�
; V = 0: (13)

This trajectory has the smallest possible variance, equal to zero because of
the way that we have discretized time in our model. If N is large and hence
� is short, then on our full initial portfolio, we take a price hit which can be
arbitrarily large.

The purpose of this paper is to show how to compute optimal trajectories
that lie between these two extremes.

2 The E�cient Frontier of Optimal Execution

In this section we de�ne and compute optimal execution trajectories and go
on in section 3 to demonstrate a precise relationship between risk aversion
and the de�nition of optimality. In particular, we show that for each level
of risk aversion there is a uniquely determined optimal execution strategy.
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2.1 The de�nition of the frontier

A rational trader will always seek to minimize the expectation of shortfall
for a given level of variance of shortfall. Naturally, a trader will prefer a
strategy that provides the minimum error in its estimate of expected cost.
Thus we de�ne a trading strategy to be e�cient or optimal if there is no
strategy which has lower variance for the same or lower level of expected
transaction costs, or, equivalently, no strategy which has a lower level of
expected transaction costs for the same or lower level of variance.14

We may construct e�cient strategies by solving the constrained opti-
mization problem

min
x:V (x)�V�

E(x): (14)

That is, for a given maximum level of variance V� � 0, we �nd a strategy
that has minimum expected level of transaction costs. Since V (x) is convex,
the set

�
V (x) � V�

	
is convex (it is a sphere), and since E(x) is strictly

convex, there is a unique minimizer x�(V�).
Regardless of our preferred balance of risk and return, every other solu-

tion x which has V (x) � V� has higher expected costs than x�(V�) for the
same or lower variance, and can never be e�cient. Thus, the family of all
possible e�cient (optimal) strategies is parameterized by the single variable
V�, representing all possible maximum levels of variance in transaction costs.
We call this family the e�cient frontier of optimal trading strategies.

We solve the constrained optimization problem (14) by introducing a
Lagrange multiplier �, solving the unconstrained problem

min
x

�
E(x) + �V (x)

�
: (15)

If � > 0, then E + �V is strictly convex, and (15) has a unique solution
x�(�). As � varies, x�(�) sweeps out the same one-parameter family, and
thus traces out the e�cient frontier.

The parameter � has a direct �nancial interpretation. It is already ap-
parent from (15) that � is a measure of risk-aversion, that is, how much
we penalize variance relative to expected cost. In fact, � is the curvature
(second derivative) of a smooth utility function, as we shall make precise in
Section 3.

14This de�nition of optimality of a strategy is the same whether the strategy is dynamic
or static. Later we will establish that under this de�nition and the price dynamics already
stated, optimal strategies are in fact static.
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For given values of the parameters, problem (15) can be solved by various
numerical techniques depending on the functional forms chosen for g(v) and
h(v). In the special case that these are linear functions, we may write the
solution explicitly and gain a great deal of insight into trading strategies.

2.2 Explicit construction of optimal strategies

With E(x) from (8) and V (x) from (5), and assuming that nj does not
change sign, the combination U(x) = E(x) + �V (x) is a quadratic func-
tion of the control parameters x1; : : : ; xN�1; it is strictly convex for � � 0.
Therefore we determine the unique global minimum by setting its partial
derivatives to zero. We readily calculate

@U

@xj
= 2�

(
��2xj � ~�

xj�1 � 2xj + xj+1

�2

)

for j = 1; : : : ; N � 1. Then @U=@xj = 0 is equivalent to

1

�2

�
xj�1 � 2xj + xj+1

�
= ~�2 xj ; (16)

with

~�2 =
��2

~�
=

��2

�

�
1� �

2�

� :

Note that equation (16) is a linear di�erence equation whose solution
may be written as a combination of the exponentials exp(��tj), where �
satis�es

2

�2

�
cosh(��) � 1

�
= ~�2:

The tildes on ~� and ~� denote an O(�) correction; as � ! 0 we have ~� ! �
and ~� ! �. The speci�c solution with x0 = X and xN = 0 is a trading
trajectory of the form:

xj =
sinh

�
�(T � tj)

�
sinh

�
�T
� X; j = 0; : : : ; N; (17)

and the associated trade list

nj =
2 sinh

�
1
2��

�
sinh

�
�T
� cosh

�
�
�
T � tj� 1

2

��
X; j = 1; : : : ; N; (18)
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where sinh and cosh are the hyperbolic sine and cosine functions, and tj� 1
2

=�
j � 1

2

�
� .

We have nj > 0 for each j as long as X > 0. Thus, for a program
of selling a large initial long position, the solution decreases monotonically

from its initial value to zero at a rate determined by the parameter �. For
example, the optimal execution of a sell program never involves the buying
of securities.15

For small time step � we have the approximate expression

� � ~�+O(�2) �
s
��2

�
+O(�); � ! 0: (19)

Thus if our trading intervals are short, �2 is essentially the ratio of the
product of volatility and our risk-intolerance to the temporary transaction
cost parameter.

The expectation and variance of the optimal strategy, for a given initial
portfolio size X, are then

E(X) = 1
2X

2 + �X + ~�X2
tanh

�
1
2��

��
� sinh

�
2�T

�
+ 2T sinh

�
��
��

2�2 sinh2
�
�T
�

(20)

V (X) = 1
2�

2X2 � sinh
�
�T
�
cosh

�
�(T � �)

�� T sinh
�
��
�

sinh2
�
�T
�
sinh

�
��
�

which reduce to (10{13) in the limits �! 0;1.

2.3 The half-life of a trade

We pause for a moment to discuss the meaning of the coe�cient �. We call

� = 1=�

the trade's \half-life". From the discussion above, we see that the larger the
value of � and the smaller the time �, the more rapidly the trade list will be
depleted. The value � is exactly the amount of time it takes to deplete the
portfolio by a factor of e.16

The de�nition of � is independent of the exogenously speci�ed execution
time T ; it is determined only by the security price dynamics and the market

15This can cease to be true if there is drift or serial correlation in the price movements.
16It would be more precise to call this the \e"-life of the trade.
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impact factors. If the risk aversion � is greater than zero, that is, if the trader
is risk-averse, then � is �nite and independent of T . Thus, in the absence
of any external time constraint (T ! 1), the trader will still liquidate his
position on a time scale �. The half-life � is the intrinsic time scale of the
trade.

For given T , the ratio �T = T=� tells us what factors constrain the trade.
If T � �, then the alotted amount of time is large relative to the half-life
of the trade. Either temporary costs are very small, volatility is extremely
large, or we are very risk averse. In this case, the bulk of trading will be
done well in advance of time T . Viewed on time scale T , the trajectory will
look like the minimum-variance solution (12).

Conversely, if T � �, then the trade is highly constrained, and is domi-
nated by temporary market impact costs. In the limit T=� ! 0, we approach
the straight line minimum-cost strategy (9).

A consequence of this analysis is that di�erent sized baskets of the same
securities will be liquidated in exactly the same fashion, on the same time
scale, provided the risk aversion parameter � is held constant. This may
seem contrary to our intuition that large baskets are e�ectively less liquid,
and hence should be liquidated less rapidly than small baskets. This is a
concsequence of our linear market impact assumption which has the math-

ematical consequence that both variance and market impact scale quadrat-
ically with respect to portfolio size.

For large portfolios, it may be more reasonable to suppose that the tem-
porary impact cost function has higher-order terms, so that such costs in-
crease superlinearly with trade size. With nonlinear impact functions, the
general framework used here still applies, but we do not obtain explicit ex-
ponential solutions as in the linear impact case. A simple practical solution
to this problem is to choose di�erent values of � (the temporary impact
parameter) depending on the overall size of the problem being considered,
recognizing that the model is at best only approximate.

2.4 Structure of the frontier

An example of the e�cient frontier is shown in Figure 1. The plot was
produced using parameters chosen as in Section 3.4. Each point of the
frontier represents a distinct strategy for optimally liquidating the same
basket. The tangent line indicates the optimal solution for risk parameter
� = 10�6. The trajectories corresponding to the indicated points on the
frontier are shown in Figure 2.

Trajectory A has � = 2�10�6; it would be chosen by a risk-averse trader
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Figure 1: The e�cient frontier. The parameters are as in Table 1. The
shaded region is the set of variances and expectations attainable by some
time-dependent strategy. The solid curve is the e�cient frontier; the dashed
curve is strategies that have higher variance for the same expected costs.
Point B is the \na��ve" strategy, minimizing expected cost without regard to
variance. The straight line illustrates selection of a speci�c optimal strategy
for � = 10�6. Points A,B,C are strategies illustrated in Figure 2.

who wishes to sell quickly to reduce exposure to volatility risk, despite the
trading costs incurred in doing so.

Trajectory B has � = 0. We call this the na��ve strategy, since it rep-
resents the optimal strategy corresponding to simply minimizing expected
transaction costs without regard to variance. For a security with zero drift
and linear transaction costs as de�ned above, it corresponds to a simple
linear reduction of holdings over the trading period. Since drift is generally
not signi�cant over short trading horizons, the na��ve strategy is very close to
the linear strategy, as in Figure 2. We demonstrate below that in a certain
sense, this is never an optimal strategy, because one can obtain substantial
reductions in variance for a relatively small increase in transaction costs.

Trajectory C has � = �2 � 10�7; it would be chosen only by a trader
who likes risk. He postpones selling, thus incurring both higher expected
trading costs due to his rapid sales at the end, and higher variance during
the extended period that he holds the security.
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Figure 2: Optimal trajectories. The trajectories corresponding to the points
shown in Figure 1. (A) � = 2� 10�6, (B) � = 0, (C) � = �2� 10�7.

3 The Risk/Reward Tradeo�

We now o�er an interpretation of the e�cient frontier of optimal strategies
in terms of the utility function of the trader. We do this in two ways: by di-
rect analogy with modern portfolio theory employing a utility function, and
by a novel approach: value-at-risk. We conclude this section with some gen-
eral observations concerning the importance of utility in forming execution
strategies.

3.1 Utility function

The utility function approach amounts to establishing that each point along
the e�cient frontier represents the unique optimal execution strategy for a
trader with a certain degree of risk aversion.

Suppose we measure utility by a smooth concave function u(w), where w
is our total wealth. This function may be characterized by its risk-aversion
coe�cient �u = �u00(w)=u0(w). If our initial portfolio is fully owned, then as
we transfer our assets from the risky stock into the alternative investment,
w remains roughly constant, and we may take �u to be constant throughout
our trading period. If the initial portfolio is highly leveraged, then the
assumption of constant � is an approximation.
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For short time horizons and small changes in w, higher derivatives of
u(w) may be neglected. Thus choosing an optimal execution strategy is
equivalent to minimizing the scalar function

Uutil(x) = �uV (x) + E(x): (21)

The units of �u are $�1: we are willing to accept an extra square dollar of
variance if it reduces our expected cost by �u dollars.

The combination E + �V is precisely the one we used to construct the
e�cient frontier in Section 2; the parameter �, introduced as a Lagrange
multiplier, has a precise de�nition as a measure of our aversion to risk. Thus
the methodology above used above to construct the e�cient frontier likewise
produces a family of optimal paths, one for each level of risk aversion.

We now return to an important point raised earlier. We have computed
optimal strategies by minimizing E + �V as measured at the initial time;
this is equivalent to maximizing utility at the outset of trading. As one
trades, information arrives that could alter the optimal trading path. The
following theorem eliminates this possibility.

Theorem: For a �xed quadratic utility function, the static strategies com-
puted above are \time-homegeneous." More precisely, given a strategy that
begins at time t = 0, at ends at time t = T , the optimal strategy computed
at time t = tk is simply the continuatio from time t = tk to t = T of the
optimal strategy computed at time t = 0.

Proof: This may be seen in two ways: by algebraic computations based
on the speci�c solutions above, and by general arguments that are valid for
general nonlinear impact functions.

First, suppose that at time k, with k = 0; : : : ; N�1, we were to compute
a new optimal strategy. Our new strategy would be precisely (17) with X
replaced by xk, T replaced by T � tk, and tj replaced by tj � tk. Using
superscript (k) to denote the strategy computed at time k, we would have

x
(k)
j =

sinh
�
�(T � tj)

�
sinh

�
�(T � tk)

� xk; j = k; : : : ; N;

and the trade lists

n
(k)
j =

2 sinh
�
1
2��

�
sinh

�
�(T � tk)

� cosh
�
�
�
T � tj� 1

2

��
X; j = k + 1; : : : ; N;
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It is then apparent that if xk is the optimal solution from (17) (with j 7! k),

then x
(k)
j = x0j and n

(k)
j = n

(0)
j , where x0j = xj and n

(0)
j = nj are the strategy

from (17,18).
For general nonlinear impact functions g(v) and h(v), then the optimal-

ity condition (16) is replaced by a nonlinear second-order di�erence relation.

The solution x
(k)
j beginning at a given time is determined by the two bound-

ary values xk and xN = 0. It is then apparent that the solution does not
change if we reevaluate it at later times.

More fundamentally, the reason that solutions are time-stable is that,
in the absence of serial correlation in the asset price movements, we have
no more information about price changes at later times than we do at the
initial time. Thus, the solution which was initially determined to be optimal
over the entire time interval is optimal as a solution over each subinterval.

3.2 Value at Risk

The concept of value at risk is traditionally used to measure the greatest
amount of money (maximum pro�t and loss) a portfolio will sustain over
a given period of time under \normal circumstances," where \normal" is
de�ned by a con�dence level.

Given a trading strategy x = (x1; : : : ; xN ), we de�ne the value at risk of
x, Varp(x), to be the level of transaction costs incurred by trading strategy
x that will not be exceeded p percent of the time. Put another way, it is the
p-th percentile level of transaction costs for the total cost of trading x.

Under the arithmetic Brownian motion assumption, total costs (market
value minus capture) are normally distributed with known mean and vari-
ance. Thus the con�dence interval is determined by the number of standard
deviations �v from the mean by the inverse cumulative normal distribution
function, and the value-at-risk for the strategy x is given by the formula:

Varp(x) = �v
p
V (x) + E(x); : (22)

That is, with probability p the trading strategy will not lose more than
Varp(x) of its market value in trading. Borrowing from the language of
Perold (1988), the implementation shortfall of the execution will not exceed
Varp(x) more than a fraction p of the time. A strategy x is e�cient if it has
the minimum possible value at risk for the con�dence level p.

Note that Varp(x) is a complicated nonlinear function of the xj com-
posing x: we can easily evaluate it for any given trajectory, but �nding
the minimizing trajectory directly is di�cult. But once we have the one-
parameter family of solutions which form the e�cient frontier, we need only
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Figure 3: E�cient frontier for Value-at-Risk. The e�cient frontier for pa-
rameters as in Table 1, in the plane of V 1=2 and E. The point of tangency is
the optimal value at risk solution for a 95% con�dence level, or �v = 1:645.

solve a one-dimensional problem to �nd the optimal solutions for the value-
at-risk model, that is, to �nd the value of �u corresponding to a given value
of �v. Alternatively, we may characterize the solutions by a simple graphi-
cal procedure, or we may read o� the con�dence level corresponding to any
particular point on the curve.

Figure 3 shows the same curve as Figure 1, except that the x-axis is
the square root of variance rather than variance. In this coordinate system,
lines of optimal VaR have constant slope, and for a given value of �v, we
simply �nd the tangent to the curve where the slope is �v.

Now the question of reevaluation is more complicated and subtle. If
we reevaluate our strategy halfway through the execution process, we will
choose a new optimal strategy which is not the same as the original optimal
one. The reason is that we now hold �v constant, and so �u necessarily
changes. The Value-at-Risk approach has many aws from a mathematical
point of view, as recognized by Artzner, Delbaen, Eber, and Heath (1997).
The particular problem we have uncovered here would arise in any problem
in which the time of measurement is a �xed date, rather than maintained a
�xed distance in the future. We regard it as an open problem to formulate
suitable measures of risk for general time-dependent problems.
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Despite this shortcoming, we suggest the smallest possible value of Varp
as an informative measure of the possible loss associated with the initial
position, in the presence of liquidity e�ects. This value, which we shall call
L-VaR, for \liquidity-adjusted Value-at-Risk," depends on the time to liqui-
dation and on the con�dence level chosen, in addition to market parameters
such as the impact coe�cient.

The optimal trajectories determined by minimizing Value at Risk do
not have the counter-intuitive scaling behavior described at the end of Sec-
tion 2.2: even for linear impact functions, large portfolios will be traded
closer to the straight-line trajectory. This is because here the cost assigned
to uncertainty scales linearly with the portfolio size, while temporary im-
pact cost scales quadratically as before. Thus the latter is relatively more
important for large portfolios.

3.3 The role of utility in execution

In this section we use the structure of the e�cient frontier and the framework
we have established to make some general observations concerning optimal
execution.

The na��ve strategy and execution strategies Let's restrict ourselves
to the situation in which a trader has no directional view concerning the
security being traded. Recall that in this case, the na��ve strategy is the sim-
ple, straight line strategy in which a trader breaks the block being executed
into equal sized blocks to be sold over equal time intervals. We will use this
strategy as a benchmark for comparison to other strategies throughout this
section.

A crucial insight is that the curve de�ning the e�cient frontier is a
smooth convex function E(V ) mapping levels of variance V to the corre-
sponding minimum mean transaction cost levels.

Write (E0; V0) for the mean and variance of the na��ve strategy. Regarding
(E0; V0) as a point on the smooth curve E(V ) de�ned by the frontier, we
have dE=dV evaluated at (E0; V0) is equal to zero. Thus, for (E; V ) near
(E0; V0), we have

E �E0 � 1

2
(V � V0)

2 d2E

dV 2

����
V=V0

;

where d2E=dV 2
��
V0

is positive by the convexity of the frontier at the na��ve
strategy.
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By de�nition, the na��ve strategy has the property that any strategy with
lower cost variance has greater expected cost. However, a special feature of
the na��ve strategy is that a �rst-order decrease in variance can be obtained
(in the sense of �nding a strategy with lower variance) while only incurring
a second-order increase in cost. That is, for small increases in variance, one
can obtain much larger reductions in cost17. Thus, unless a trader is risk
neutral, it is always advantageous to trade a strategy that is at least to
some degree \to the left" of the na��ve strategy. We conclude that from a
theoretical standpoint it never makes sense to trade a strictly risk-neutral
strategy.

The role of liquidity. An intuitive proposition is that all things being
equal, a trader will execute a more liquid basket more rapidly than a less
liquid basket. In the extreme this is particularly clear. A broker given a
small order to work over the course of a day will almost always execute
the entire order immediately. How do we explain this? The answer is that
the market impact cost attributable to rapid trading is negligible compared
with the opportunity cost incurred in breaking the order up over an entire
day. Thus, even if the expected return on the security over the day is zero,
the perception is that the risk of waiting is outweighed by any small cost of
immediacy. Now, if a trader were truly risk neutral, in the absense of any
view he would always use the na��ve strategy and use the alotted time fully.
This would make sense because any price to pay for trading immediately is
worthless if you place no premium on risk reduction.

It follows that any model that proposes optimal trading behavior should
predict that more liquid baskets are traded more rapidly than less liquid
ones. Now, a model that considers only the minimization of transaction
costs (see e.g., Bertsimas and Lo (1998)) is essentially a model that excludes
utility. In such a model and under our basic assumptions, traders will trade
all baskets at the same rate irrespective of liquidity, that is unless they
have an explicit directional view on the security or the security possesses
extreme serial correlation in its price movements.18 Another way of seeing
this is that the half-life of all block executions, under the assumption of
risk-neutral preferences, is in�nite.

17This fact is not entirely obvious outside of the e�cient frontier analysis.
18We remind the reader that in Section 3 we note that our model in the case of linear

transaction costs does not predict more rapid trading for smaller versus larger baskets of
the same security. However, this is a result of choosing linear temporary impact functions
and the problem goes away when one considers more realistic super-linear functions. See
section 3 for more details.
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3.4 Choice of parameters

In this section we compute some numerical examples for the purpose of
exploring the qualitative properties of the e�cient frontier. Throughout the
examples we will assume we have a single stock with current market price
S0 = 50, and that we initially hold one million shares. Moreover, the stock
will have 30% annual volatility, a 10% expected annual return of return, a
bid-ask spread of 1/8 and a median daily trading volume of 5 million shares.

With a trading year of 250 days, this gives daily volatility of 0:3=
p
250 =

0:019 and expected fractional return of 0:1=250 = 4 � 10�4. To obtain our
absolute parameters � and � we must scale by the price, so � = 0:019 � 50 =
0:95 and � = (4� 10�4) � 50 = 0:02: Table 1 summarizes this information.

Suppose that we want to liquidate this position in one week, so that
T = 5 (days). We divide this into daily trades, so � is one day and N = 5.

We now choose parameters for the temporary cost function (7). We
choose � = 1=16, that is, the �xed part of the temporary costs will be one-
half the bid-ask spread. For � we will suppose that for each one percent
of the daily volume we trade, we incur a price impact equal to the bid-ask
spread. For example, trading at a rate of 5% of the daily volume incurs a
one-time cost on each trade of 5/8. Under this assumption we have � =
(1=8)=(0:01 � 5� 106) = 2:5� 10�6.

For the permanent costs, a common rule of thumb is that price e�ects
become signi�cant when we sell 10% of the daily volume. If we suppose
that \signi�cant" means that the price depression is one bid-ask spread,
and that the e�ect is linear for smaller and larger trading rates, then we
have  = (1=8)=(0:1 �5�106) = 2:5�10�7. Recall that this parameter gives
a �xed cost independent of path.

We have chosen � = �u = 10�6. For these parameters, we have from
(19) that for the optimal strategy, � � 0:6=day, so �T � 3. Since this
value is near one in magnitude, the behavior is an interesting intermediate
in between the na��ve extremes.

For the value-at-risk representation, we assume a 95% desired con�dence
level, giving �v = 1:645.

4 The Value of Information

Up to this point we have discussed optimal execution under the assump-
tion that price dynamics follow an arithmetic random walk with zero drift.
A simplifying assumption intrinsic to this process is that price evolution
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Initial stock price: S0 = 50 $=share
Initial holdings: X = 106 share

Liquidation time: T = 5days
Number of time periods: N = 5

30% annual volatility: � = 0:95 ($=share)=day1=2

10% annual growth: � = 0:02 ($=share)=day
Bid-ask spread = 1=8: � = 0:0625 $=share

Daily volume 5 million shares:  = 2:5 � 10�7 $=share2

Impact at 1% of market: � = 2:5 � 10�6 ($=share)=(share=day)
Static holdings 11,000 shares: �u = 10�6=$

VaR con�dence p = 95%: �v = 1:645

Table 1: Parameter values for test case.

provides no information as to future price movements. An immediate con-
clusion is that optimal execution trajectories are static strategies.19 There
are three relevant ways that random walk with zero drift may fail to correctly
represent the price process.

First, the price process may have drift. For example, if a trader has a
strong directional view, then he will want to incorporate this view into the
liquidation strategy. Second, the price process may exhibit serial correla-
tion. The presence of �rst-order serial correlation, for example, implies price
moves in a given period provide non-trivial information concerning the next
period movement of the asset.20 Lastly, at the start of trading, it may be
known that at some speci�c point in time an event will take place whose
outcome will cause a material shift in the parameters governing the price
process.21 For example, Brown, Harlow, and Tinic (1988) show that events

19This is a general feature of stochastic dynamic control. If the information available
at a given time does not increase the forecastability of future price movements relative to
the uncondtional forecasts, then optimal execution strategies will always be static.

20Bertsimas and Lo (1998) study a general form of this assumption, wherein an investor
possesses (possibly) private information in the form of a serially correlated \information
vector" that acts as a linear factor in asset returns.

21Such event induced parameter shifts include quareterly and annual earnings announce-
ments, dividend announcements and share repurchases. Event studies documenting these
parameter shifts and supplying theoretical grounding for their existence include Beaver
(1968), Campbell, Lo, and MacKinlay (1997), Dann (1981), Easterwood and Nutt (1999),
Fama, Fisher, Jensen, and Roll (1969), Kalay and Loewentstein (1985), Kim and Verrec-
chia (1991), Patell and Wolfson (1984), and Ramaswami (1999).
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cause temporary shifts in both risk and return of individiaul securities, and
that the extent of these shifts depends upon the outcome of the event. In
particular, securities react more strongly to bad news than good news.

We study a stylized version of events in which a known event at a known
time (e.g., an earnings announcement) has several possible outcomes. The
probability of each outcome is known and the impact that a given outcome
will have on the parameters of the price process is also known. Clearly, opti-
mal strategies must explicitly use this information, and we develop methods
to incorporate event speci�c information into our risk-reward framework.
The upshot is a piecewise strategy that trades statically up to the event,
and then reacts explicitly to the outcome of the event. Thus, the burden
is on the trader to determine which of the possible outcomes occured, and
then trade accordingly.

4.1 Drift

It is convenient to regard a drift parameter in a price process as a directional
view of price movements. For example, a trader charged with liquidating
a block of a single security may believe that this security is likely to rise.
Intuitively, it would make sense to trade this issue more slowly to take
advantage of this view.

To incorporate drift into price dynamics, we modify (1) to

Sk = Sk�1 + ��1=2�k + �� � � g
�nk
�

�
; (23)

where � is an expected drift term. If the trading proceeds are invested in an
interest-bearing account, then � should be taken as an excess rate of return
of the risky asset.

We readily write the modi�ed version of (8):

E(x) = 1
2X

2 � �
NX
k=1

�xk + �
NX
k=1

jnkj + ~�

�

NX
k=1

n 2
k : (24)

The variance is still given by (5). The optimality condition (16) becomes

1

�2

�
xk�1 � 2xk + xk+1

�
= ~�2

�
xk � �x

�
;

in which the new parameter

�x =
�

2��2
(25)
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is the optimal level of security holding for a time-independent portfolio opti-
mization problem. For example, the parameters of Section 3.4 give approx-
imately �x = 1; 100 shares, or 0.11% of our initial portfolio. We expect this
fraction to be very small, since, by hypothesis, our eventual aim is complete
liquidation.

The optimal solution (17) becomes

xj =
sinh

�
�(T � tj)

�
sinh

�
�T
� X +

"
1� sinh

�
�(T � tj)

�
+ sinh

�
�tj
�

sinh
�
�T
�

#
�x (26)

for j = 0; : : : ; N , with associated trade sizes

nj =
2 sinh

�
1
2��

�
sinh

�
�T
� cosh

�
�
�
T � tj� 1

2

��
X (27)

+
2 sinh

�
1
2��

�
sinh

�
�T
�
"
cosh

�
�tj� 1

2

�
� cosh

�
�
�
T � tj� 1

2

��#
�x:

This trading trajectory is the sum of two distinct trajectories: the zero-drift
solution as computed before, plus a \correction" which pro�ts by capturing
a piece of the predictable drift component. The size of the correction term
is proportional to �x, thus to �; it is independent of the initial portfolio size
X.22

The di�erence between this solution and the no-drift one of (17) may be
understood by considering the case when �T � 1, corresponding to highly
liquid markets. Whereas the previous solution relaxed from X to zero on a
time scale � = 1=�, this one relaxes instead to the optimal static portfolio
size �x. Near the end of the trading period, it sells the remaining holdings to
achieve xN = 0 at t = T .

In this case, we require 0 � �x � X in order for all the trades to be in
the same direction. This breaks the symmetry between a buy program and
a sell program; if we wanted to consider buy programs it would be more
logical to set � = 0.

22To place this in an institutional framework, consider a program trading desk that sits
in front of customer ow. If this desk were to explictly generate alphas on all securities
that ow through the desk in an attempt to, say, hold securities with high alpha and sell
securities more rapidly with low alpha, the pro�t would not scale in proportion to the
average size of the programs. Rather, it would only scale with the number of securities
that ow through the desk. An even stronger conclusion is that since the optimal strategy
disconnects into a static strategy unrelated to the drift term, and a second strategy related
to the drift term, there is no particular advantage to restricting trading to securities which
the desk currently holds positions in.
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Gain due to drift

Now suppose that the price dynamics is given by (23), with � > 0, but we
choose to determine a solution as though � = 0. This situation might arise,
for example, in the case where a trader is trading a security with a non-
drift, but unknowingly assumes the security has no drift. We now explicitly
calculate the loss associated with ignoring the drift term.

Write x�j for the optimal solution (26) with � > 0, and x0j for the sub-
optimal solution (17), or (26) with � = 0. Also write E�(X) and V �(X) for
the optimal expected cost and its variance, measured by (24) and (5) with
xj = x�j ; let us write E

0(X) and V 0(X) for the sub-optimal values of (24)

and (5) evaluated with xj = x0j . The corresponding objective functions are

U�(X) = E�(X)+�V �(X) and U0(X) = E0(X)+�V 0(X). Then we de�ne
the gain due to drift to be the di�erence U0(X)�U�(X); this is the amount
we reduce our cost and variance by being aware of and taking account of
the drift term. Clearly U0�U� � 0, since x� is the unique optimal strategy
for the model with � > 0.

Now, the value of the terms in U0 that come from (8) and (5) is only
increased by going from x0 to x�, since x0 and not x� was the optimum
strategy with � = 0. Therefore, an upper bound for the gain is

U0 � U� � ��
NX
k=1

�
x�k � x0k

�
:

That is, in response to the positive drift, we should increase our holdings
throughout trading. This reduces our net cost by the amount of asset price
increase we capture, at the expense of slightly increasing our transaction
costs and volatility exposure. An upper bound for the possible bene�t is the
amount of increase we capture.

But x�k � x0k is just the term in square brackets in (26) times �x, which is
clearly independent of X. Indeed, we can explicitly evaluate this di�erence
to �nd

��

NX
k=1

�
x�k � x0k

�
= � �xT

 
1� �

T

tanh
�
1
2�T

�
tanh

�
1
2��

�
!
:

Since tanh(x)=x is a positive decreasing function, this quantity is positive
and bounded above by ��xT , the amount you would gain by holding portfolio
�x for time T . Any reasonable estimates for the parameters show that this
quantity is negligible compared to the impact costs incurred in liquidating
an institutional-size portfolio over a short period.
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4.2 Serial correlation

Now let us suppose that the asset prices exhibit serial correlation, so that
at each period we discover a component of predictability of the asset price
in the next period. In the model (1), with mean drift � = 0, we now
suppose that the �k are serially correlated with period-to-period correlation
� (j�j < 1). We can determine �k at time k based on the observed change
Sk � Sk�1 and our own sale nk.

With serial correlation, the optimal strategy is no longer a static trajec-
tory determined in advance of trading; since each price movement gives us
some information about the immediate future price movements, the optimal
trade list can be determined only one period at a time. Thus a fully optimal
solution requires the use of dynamic programming methods. However, since
information is still roughly local in time, we can estimate the gain attainable
by an optimal strategy. We state the conclusion in advance of our estimate.
The value of information contained in price movements due to serial correla-
tion is independent of the size of the portfolio being traded. The calculation
below lends intuition to this counter-intuitive statement. See Appendix B
for a more rigorous computation.

Consider two consecutive periods, during which our base strategy has
us selling the same number, n, of shares in each period. With the linear
price impact model, in each period we depress the price by �+ �(n=�) dol-
lars/share. We pay this cost on each sale of n shares, so the total cost due
to market impact per period is

per-period impact cost
of \smooth" strategy

=
�
�+ �

n

�

�
n:

Suppose we have some price information due to correlations. If we know
�k at the previous period, then the predictable component of the price change
is roughly ���1=2. If we shift the sale of �n shares from one period to the
next, then the amount of extra money we can earn per period is roughly

per-period gain by adapting to correlations � ���1=2 �n:

But this adaptation increases our impact costs. After the shift, in the
�rst period the price depression is � + �((n � �n)=�), while in the second
period it is � + �((n + �n)=�). We pay these costs on n � �n and n + �n
shares respectively, so the market impact cost per period is now

per-period cost of
adapted strategy

=
1

2

��
�+ �

n� �n

�

�
(n� �n) +

�
�+ �

n+ �n

�

�
(n+ �n)

�

=
�
�+ �

n

�

�
n +

�

�
�n2:
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To determine how many shares we should shift, we solve the quadratic
optimization problem

max
�n

h
���1=2 �n � �

�
�n2

i
:

We readily �nd the optimal �n

�n� =
���3=2

2�

and the maximum possible gain

maximum per-period gain =
�2�2�2

4�
: (28)

In Appendix B we con�rm this heuristic analysis by a detailed dynamic
programming computation, which accounts for optimal shifts across multiple
periods.23

Note that both the size of the adaptation, and the resulting gain, are
independent of the amount n of shares that we would sell in the unadapted
strategy. That is, they are independent of the size of our initial portfolio.
Instead the binding constraint is the liquidity of the security being traded,
and the magnitude of the correlation coe�cent. The more information avail-
able due to correlation and the more liquid the security, the more overall
gain that is available due to adapting the strategy to correlations.24

To indicate the size of gains that can be expected by adapting to cor-
relations, we give a numerical example based on that of Section 3.4. We
take parameters as in Section 3.4, except that for the temporary impact

23We briey explain the limitation of this approximation. When � is close to zero, this
approximation is extremely close to correct, because the persistence of serial correlation
e�ects dies down very quickly after the �rst period. When j�j is too large to ignore, the
approximation is too small for � > 0. That is, Equation (28) understates the possible
gains over ignoring serial correlation. Conversely, when � < 0, (28) overstates the possible
gains due to serial correlation. As the former is the empirically more frequent case, we
assert that (28) is useful for bounding the possible gains in most situations available from
serial correlation. See Appendix B.

24This result is especially simple because we are assuming linear impact functions. Let
us briey show what happens in the more general case of a nonlinear impact function
h(v) = h(n=�). The cost per period due to market impact is

impact cost of
adapted strategy

=
1

2

�
h

�
n� �n

�

�
(n� �n) + h

�
n+ �n

�

�
(n+ �n)

�

� h
�n
�

�
n +

�
1

2
h00
�n
�

� n

�
+ h0

�n
�

�� �n2

�
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1% 2% 5% 10%
� � = 2.5 1.25 0.5 0.25 �10�6

-0.1 19 38 96 192
-0.2 64 129 321 643
-0.5 257 514 1,286 2,571

Table 2: Gain from serial correlation. Approximate gain, in dollars per
day, earned by trading to serial correlation of price movements, for di�erent
temporary price impact coe�cients and di�erent autocorrelation coe�cients.
The parameter � is the serial correlation across a ten-minute time period.
The temporary impact coe�cient is estimated by specifying the percentage
of the market average volume we can trade before incurring one bid-ask
spread in impact cost.

parameter �, we suppose that steady trading at a rate of either 1%, 2%,
5%, or 10% of the market's average volume requires a price concession of
one bid-ask spread, or 25 basis points. We suppose that over a ten-minute
time period (� = 0:0256 day), the correlation in successive price motions is
� = 0:5, 0.2, or 0.1. Table 2 shows the resulting gain in dollars per day (39
periods) given by the exact formula (35) from Appendix B.25 Only in the
case of an extremely liquid stock with extremely high serial correlation are
these gains signi�cant for institutional trading.

for small �n. Now the optimal shift and maximum gain are

�n� =
���3=2

vh00 + 2h0
;

maximum gain
per period

=
�2�2� 2

2(vh00 + 2h0)
;

where h0 and h00 are evaluated at the base sale rate v = n=� . The linear case is recovered
by setting h(v) = � + �v; this has the special property that h0 is independent of v and
h00 = 0.
In general, suppose h(v) � O(v�) as v ! 1. We require � > 0 so that h(v) is

increasing: selling more shares always pushes the price down more. The marginal cost
is h0(v) � O(v��1); � > 1 corresponds to an increasing marginal impact, � < 1 to a
decreasing marginal impact. Then the per-period cost we pay on our base strategy is
� O(v�+1) for large initial portfolios and hence large rates of sale. The marginal gain
from adapting to correlation is � O(v��1) in the same limit.
Thus, while for nonlinear impact functions, the gain available by adapting to correlation

may increase with v if � > 1, it is always asymptotically smaller than the impact cost
paid on the underlying program. Thus the correlation gain can always be neglected for
su�ciently large portfolios.

25For this comparison, we have neglected permanent impact, setting  = 0 so ~� = �.
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4.3 Parameter shifts

We now discuss the impact on optimal execution of scheduled news events
such as earnings or dividend announcements. Such events have two key
features which make them an important object of study. First, the outcome
of the event determines a shift in the parameters governing price dynamics
(see Brown, Harlow, and Tinic (1988), Ramaswami (1999), (Easterwood
and Nutt 1999)). Second, the fact that they are scheduled increases the
likelihood that we can detect what the true outcome of the event is. We
formalize this situation below and give explicit formulas for price trajectories
before and after the even takes place.

Suppose that at some time T� between now and the speci�ed �nal time
T , an event will occur, the outcome of which may or may not cause a shift
in the parameters of price dynamics. We use the term regime or parameter

set to refer to the collection R = f�; �; : : : g of parameters that govern price
dynamcis at any particular time, and events of interest to us are those that
have the possiblity of causing parameter shifts.

Let R0 = f�0; �0; : : : g be the parameters of price dynamics at the time we
begin to liquidate. Suppose the market can shift to one of p possible new sets
of parameters R1; : : : ; Rp, so that Rj is characterized by parameters �j ; �j ,
etc, for j = 1; : : : ; p. We suppose also that we can assign probabilities to
the possible new states, so that Pj is the probability that regime Rj occurs.
These probabilities are independent of the short-term market uctuations
represented by �k. Of course, it is possible that some Rj has the same values
as R0, in which case Pj is the probability that no change occurs.

We consider a dynamic trading strategy that yields globally optimal
strategies in the presence of a parameter shift at time T�. Suppose that
T� = ts = s� . We precompute an initial trajectory x0 = (x00; : : : ; x

0
s), with

x00 = X; we denote X� = x0s. We also compute a family of trajectories
xj = (xjs; : : : ; x

j
N ) for j = 1; : : : ; p, all of which have xjs = X� and xjN = 0.

We follow trajectory x0 until the time of the shift. Once the shift occurs, we
assume that we can quickly identify the outcome of the event and the new
set of parameters governing price dynamics. With this settled, we complete
trading using the corresponding trajectory xj. We shall show that we can
determine each trajectory using static optimization, although we cannot
choose which one to use until the event occurs. Also, the starting trajectory
x0 will not be the same as the trajectory we would choose if we believed that
regime R0 would hold through the entire time T .

To determine the trajectories x0; x1; : : : ; xp, we reason as follows. Sup-
pose we �xed the common value X� = x0s = xjs. Then, by virtue of the
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independence of the regime shift itself from the security motions, the opti-
mal trajectories conditional on the value of X� are simply those that we have
already computed with a small modi�cation to include the given nonzero �-
nal value. We can immediately write

x0k = X
sinh

�
�0(T� � tk)

�
sinh

�
�0T�

� +X�

sinh
�
�0tk

�
sinh

�
�0T�

� ; k = 0; : : : ; s;

where �0 is determined from �0; �0; : : : This trajectory is determined in the
same way as in Section 2.2; it is the unique combination of exponentials
exp(��0t) that has x00 = X and x0s = X�. Similarly,

xjk = X�

sinh
�
�j(T � tk)

�
sinh

�
�j(T � T�)

� ; k = s; : : : ; N ; j = 1; : : : ; p:

Thus we need only determine X�.
To determine X�, we determine the expected loss and its variance of

the combined strategy. Let E0 and V0 denote the expectation and variance
of the loss incurred by trajectory x0 on the �rst segment k = 0; : : : ; s.
For j = 1; : : : ; p, let Ej and Vj denote the expectation and variance of
loss incurred by trajectory xj on the second segment k = s; : : : ; N . These
quantities can readily be determined using the formulas (5,8). Then, by
virtue of the independence of the regime shift and the security motions, the
expected loss of the compound strategy is

E = E0 + P1E1 + � � �+ PpEp;

and its variance is

V = V0 + P1V1 + � � �+ PpVp + 1
2

pX
i;j=1

PiPj
�
Ei �Ej

�2
:

We can now do a one-variable optimization in X� to minimize E + �V . An
example is shown in Figure 4.

5 Conclusions

The central feature of our analysis has been the construction of an e�cient

frontier in a two-dimensional plane whose axes are the expectation of total
cost and its variance. Regardless of an individual's tolerance for risk, the
only strategies which are candidates for being optimal are found in this
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Figure 4: Optimal strategy with parameter shift. Parameters are as in Sec-
tion 3.4, except that the initial volatility is 10% annually. After close of
trading on the second day, an announcement is expected which will cause
the volatility either to decrease to 5% (case 1) or to increase to 40% (case 2)
for the remainder of the trading period. The solid lines show the risk-averse
optimal strategy including the two possible branches to be taken following
the announcement. The dashed line is the strategy that would be followed
under the assumption that the initial parameters will last throughout the
whole liquidation.
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one-parameter set. For linear impact functions, we give complete analytical
expressions for the strategies in this set.

Then considering the details of risk aversion, we have shown how to
select an optimal point on this frontier either by classic mean-variance opti-
mization, or by the more modern concept of Value at Risk. These solutions
are easily constructed numerically, and easily interpreted graphically by ex-
amination of the frontier.

Several conclusions of practical importance follow from this analysis:

1. Because the set of attainable strategies, and hence the e�cient frontier,
are generally a smooth and convex, a trader who is at all risk-averse
should never trade according to the \na��ve" strategy of minimizing
expected cost. This is because in the neighborhood of that strategy, a
�rst-order reduction in variance can be obtained at the cost of only a
second-order increase in expected cost.

2. We also observe that this careful analysis of the costs and risks of liq-
uidation can be used to give a more precise characterization of the risk
of holding the initial portfolio. For example, we can de�ne \liquidity-
adjusted Value at Risk" (L-VaR) to be, for a given time horizon, the
minimum VaR of any static liquidation strategy.

Although it may seem counter-intuitive that optimal strategies can be de-
termined in advance of trading, in Section 4 we have argued that only very
small gains can be obtained by adapting the strategy to information as it is
revealed.

The model may be extended in several interesting ways:

� Continuous time: The limit � ! 0 is immediate in all our solutions.
The trading strategy is characterized by a holdings function x(t) and
a trading rate v(t) = lim�!0 nk=� . The minimum-variance strategy of
Section 1 has in�nite cost, but the optimal strategies for �nite � have
�nite cost and variance. However, this limit is at best a mathematical
convenience, since our market model is implicitly a \coarse-grained"
description of the real dynamics.

� Nonlinear cost functions: The conceptual framework we have outlined
is not restricted to the linear temporary and permanent impact func-
tions (6,7), though the exact exponential solutions of Section 2 are
special to that case. For nonlinear functions g(v) and h(v) that satisfy
suitable convexity conditions, optimal risk-averse trajetories are found
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by solving a nonquadratic optimization problem; the di�culty of this
problem depends on the spec�c functional form chosen.

� Time-varying coe�cients: Our framework also covers the case in which
the volatility, market impact parameters, and perhaps expected drift
are time-dependent, as long as their values are known at the start of
liquidation; �nding the optimal strategy entails solving a linear system
of size equal to the number of time periods (times the number of stocks,
for a portfolio problem). One example in which this is useful is if the
price is expected to jump either up or down on a known future date
(an earnings announcement, say), as long as we have a good estimate
of the expected size of this jump.

We hope that these extensions will lead to further useful insights.

A Multiple-Security Portfolios

With m securities, our position at each moment is a column vector xk =
(x1k; : : : ; xmk)

T, where T denotes transpose. The initial value x0 = X =
(X1; : : : ;Xm)

T, and our trade list is the column vector nk = xk�1 � xk. If
xjk < 0, then security j is held short at time tk; if njk < 0 then we are
buying security j between tk�1 and tk.

A.1 Trading model

We assume that the column vector of security prices Sk follows a multidi-
mensional arithmetic Brownian random walk with zero drift. Its dynamics
is again written as in (1), but now �k = (�1k; : : : ; �rk)

T is a vector of r
independent Brownian increments, with r � m, with � an m � r addi-
tive volatility matrix. C = ��T is the m �m symmetric positive de�nite
variance-covariance matrix.

The permanent impact g(v) and the temporary impact h(v) are vector
functions of a vector. We consider only the linear model

g(v) = � v; h(v) = � sgn(v) + H v;

where � and H arem�mmatrices, and � is anm�1 column vector multiplied
component-wise by sgn(v). The ij element of � and of H represents the price
depression on security i caused by selling security j at a unit rate. We require
that H be positive de�nite, since if there were a nonzero v with vTHv � 0,
then by selling at rate v we would obtain a net bene�t (or at least lose
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nothing) from instantaneous market impact. We do not assume that H and
� are symmetric.

The market value of our initial position is XTS0. The loss in value
incurred by a liquidation pro�le x1; : : : ; xN is calculated just as in (3), and
we �nd again, as in (4,5),

E[x] = �TjXj +
NX
k=1

� xTk�vk +
NX
k=1

� vTkHvk

= �TjXj + 1
2X

T�SX +
NX
k=1

� vTk
~Hvk +

NX
k=1

� xTk�
Avk (29)

V [x] =

NX
k=1

�xTkCxk; (30)

with ~H = HS� 1
2��

S. We use superscripts S and A to denote symmetric and
anti-symmetric parts respectively, so H = HS +HA and � = �S + �A with

HS = 1
2

�
H +HT

�
; �S = 1

2

�
� + �T

�
; �A = 1

2

�
�� �T

�
:

Note that HS is positive de�nite as well as symmetric. We shall assume that
� is small enough so that ~H is positive de�nite and hence invertible. We
have assumed that each component of v has a consistent sign throughout
the liquidation.

Despite the multidimensional complexity of the problem, the set of all
outcomes is completely described by these two scalar functionals. The utility
function and value at risk objective functions are still given in terms of E
and V by (21,22).

A.2 Optimal trajectories

Determination of the optimal trajectory for the portfolio is again a linear
problem. We readily �nd that stationarity of E + �V with respect to vari-
ation of xjk gives the multidimensional extension of (16)

xk�1 � 2xk + xk+1

�2
= �~H�1C xk + ~H�1�A

xk�1 � xk+1

2�
; (31)

for k = 1; : : : ; N � 1:
Since ~H�1C is not necessarily symmetric and ~H�1�A is not necessarily

antisymmetric, despite the symmetry of ~H, it is convenient to de�ne a new
solution variable y by

yk = ~H1=2 xk:
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We then have

yk�1 � 2yk + yk+1

�2
= �Ayk + B

yk�1 � yk+1

2�
;

in which

A = ~H�1=2C ~H�1=2; and B = ~H�1=2�A ~H�1=2

are symmetric positive de�nite and antisymmetric, respectively. This is a
linear system in (N � 1)m variables which can easily be solved numerically.

A.3 Explicit solution for diagonal model

To write explicit solutions, we make the diagonal assumption that trading
in each security a�ects the price of that security only and no other prices.
This corresponds to taking � and H to be diagonal matrices, with

�jj = j; Hjj = �j : (32)

We require that each j > 0 and �j > 0. With this assumption, the num-
ber of coe�cients we need in the model is proportional to the number of
securities, and their values can plausibly be estimated from available data.
For � and H diagonal, E[x] decomposes into a collection of sums over each
security separately, but the covariances still couple the whole system.

In particular, since � is now symmetric, we have �A = 0 and hence
B = 0; further, ~H is diagonal with

~Hjj = �j

�
1� j�

2�j

�
:

We require these diagonal elements to be positive, which will be the case if
� < minj(2�j=j). Then the inverse square root is trivially computed.

For � > 0, �A has a complete set of positive eigenvalues which we denote
by ~� 2

1 ; : : : ; ~�
2
m, and a complete set of orthonormal eigenvectors which form

the columns of an orthogonal matrix U . The solution in the diagonal case
is a combination of exponentials exp(��jt), with

2

�2

�
cosh(�j�)� 1

�
= ~� 2

j :

With yk = Uzk, we may write

zjk =
sinh

�
�j(T � tk)

�
sinh

�
�jT

� zj0;
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Share price

�
$50
$100

�

Daily volume

�
5
20

�
million

Annual variance

�
30% 10%
10% 15%

�

Table 3: Parameters for two-security example.

in which the column vector z0 is given by

z0 = UTy0 = UT ~H1=2X:

Undoing the above changes of variables, we have �nally

xk = ~H�1=2Uzk:

With multiple securities, it is possible for some components of the ve-
locity to be non-monotonic in time. For example, if our portfolio includes
two securities whose uctuations are highly correlated, with one much more
liquid that the other, an optimal strategy directs us to rapidly go short in
the liquid one to reduce risk, while we slowly reduce the whole position to
zero. In this case, the above expressions are not exactly correct because of
the changing sign of the cost associated with the bid-ask spread. Since this
e�ect is probably very small, a reasonable approach in such a case is to set
� = 0.

A.4 Example

We now briey consider an example with only two securities. For the �rst
security we take the same parameters as for the example of Section 3.4.
We choose the second security to be more liquid and less volatile, with
a moderate amount of correlation. These parameters are summarized in
Table 3. From this market data, we determine the model parameters just
as in Section 3.4.

Our initial holdings are 10 million shares in each security; we take a time
horizon T = 5 days and give ourselves N = 5 periods. Figure 5 shows the
e�cient frontier in the (V;E)-plane. The three trajectories corresponding
to the points A, B, C are shown in Figure 6.
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Figure 5: E�cient frontier for two securities. The straight line is the optimal
point for � = 10�6; the three points A, B, and C are optimal strategies for
di�erent values as illustrated in Figure 6.

For these example parameters, the trajectory of security 1 is almost iden-
tical to its trajectory in the absence of security 2 (Section 3.4). Increasing
the correlation of the two securities increases the interdependence of their
trajectories; we expect that relaxing the assumption of diagonal transaction
costs would have the same e�ect.

B Dynamic Programming

Here we support the simple analysis of Section 4.2 by presenting a dynamic
programming solution of the optimal liquidation problem when asset price
movements exhibit period-to-period correlation. We compute the exact so-
lution with risk-aversion for a two-period and for a three-period model, and
we show why going further is extremely di�cult and requires an increasing
number of assumptions on the distributions of the asset price motions. For
the risk-neutral case, we compute the full solution (as done by Bertsimas
and Lo (1998)) and show that the gain is bounded independently of the
initial portfolio size.

We choose the speci�c model

�k = � �k�1 + (1� �) �̂k; (33)

where the �̂k are independent with zero mean and unit variance. In the
absence of information about other �j, we have E

�
�k
�
= 0 and V

�
�k
�
=
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Figure 6: Optimal trajectories for two securities. As in Figure 5, for (A)
� = 2� 10�6, (B) the na��ve strategy with � = 0, (C) � = �5� 10�8.

(1��)=(1+�). Conditional on �k, we have Ek
�
�k+1

�
= ��k and Vk

�
�k+1

�
=

(1��)2; here Ek and Vk denote expectation and variance using information
available at time k.

To understand our choice of parameters, note that for j > 0,

�1 + � � �+ �j = �
1� �j

1� �
�0 +

�
1� �j

�
�̂1 + � � � + �

1� �
�
�̂j

and so

E 0

�
�1 + � � �+ �j

�
= �

1� �j

1� �
�0

V0

�
�1 + � � �+ �j

�
= j � 2�

1� �j

1� �
+ �2

1� �2j

1� �2
:

Therefore a trader who observes prices with dynamics given by (1) over
times larger than the correlation time will measure a volatility

lim
j!1

1

j
V0

�
Sk+j � Sk

�
= �;

as before. Thus the long-term volatility � is not necessarily the same as
the size of short-term uctuations that enter the detailed model (33). For a
given value of �, a model with � > 0 will uctuate less on short time scales
than will a model with � < 0.
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B.1 Risk-averse case

The adaptive optimal strategy is a rule for determining nk+1 at time k, in
terms of the observables Sk, �k, and xk. We use dynamic programming,
working from k = N � 1 back to k = 0. We shall write n�k+1 for the optimal
strategy.

k = N� 1: At the last time interval, our trading strategy must be

n�N = xN�1:

The cost incurred by this strategy in the last period is

CN�1

�
xN�1

�
=

 
�

�
nN + �

!
xN�1 =

�

�
x 2
N�1 + � xN�1

This depends on our holdings xN�1 at the start of the last period, but does
not depend on any of the random price movements �k.

k = N� 2: In the next-to-last interval, we are to choose nN�1 in terms
of SN�2, �N�2, and xN�2, knowing that in the �nal period we will choose
the strategy above. Thus, for a particular choice nN�1 and a particular
realization �N�1 of the price change, the total trading cost incurred over the
last two periods is

CN�2 =
�
SN�2 � ~SN�1

�
nN�1 +

�
SN�2 � SN�1

�
xN�1 + CN�1

=
� �
�
nN�1 + �

�
nN�1 +

�
nN�1 � ��1=2�N�1

�
xN�1 + CN�1:

The �rst term is the costs incurred on shares sold between N �2 and N �1,
the second is the change in value of the shares still held at N�1, and the third
is the cost of liquidating the remainder. This expression has uncertainty
because of the presence of �N�1.

We use EN�2

�
�N�1

�
= ��N�2 and VN�2

�
�N�1

�
= (1� �)2 to evaluate

UN�2

�
xN�2; �N�2; nN�1

�
= EN�2

�
CN�2

�
+ �VN�2

�
CN�2

�
=

=
�

�

�
x 2
N�1 + n 2

N�1

�
+ � xN�2 +  xN�1nN�1

� ��1=2xN�1��N�2 + ��2�x 2
N�1(1� �)2:
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On substituting xN�1 = xN�2 � nN�1, this becomes a quadratic expression
in nN�1, with coe�cients that are completely known at time N � 2. We
readily �nd the minimizing nN�1:

n�N�1

�
xN�2; �N�2

�
=

1 + (1� �)2~�2�2

1 + 1
2 (1� �)2~�2�2

xN�2

2
� ���3=2=4~�

1 + 1
2(1� �)2~�2�2

�N�2

and the optimal share holdings at the next period

x�N�1

�
xN�2; �N�2

�
=

1

1 + 1
2 (1� �)2~�2�2

xN�2

2
+

���3=2=4~�

1 + 1
2(1� �)2~�2�2

�N�2

where ~�2 = ��2=~� and ~� = �� 1
2� as before. In these expressions, the �rst

term is exactly our static strategy (17,18), with T = 2� and with �2 replaced
by (1 � �)2�2. Regardless of the speci�c value of �N�2, our knowledge of
it reduces our perceived variance of future price movements if � > 0; if
� < 0 then local variance is higher for the same value of the long-term
volatility. The second term is a response to the knowledge we have gained
from observation of the most recent change.

We now evaluate CN�2 with this strategy to �nd

C�
N�2

�
xN�2; �N�2; �N�1

�
=

2
4 ~�

2�

0
@1 +

 
1
2 (1� �)2~�2�2

1 + 1
2(1� �)2~�2�2

!2
1
A+



2

3
5x 2

N�2

�
1
2(1� �)2~�2�2 � 12���1=2�
1 + 1

2(1� �)2~�2�2
�2 xN�2�N�2+

�2�2�2=8~��
1 + 1

2(1� �)2~�2�2
�2 � 2

N�2 + � xN�2

�
1
2��

1=2

1 + 1
2 (1� �)2~�2�2

xN�2�N�1 � ��2�2=4~�

1 + 1
2 (1� �)2~�2�2

�N�2�N�1

The minimum risk-averse cost is

U�
N�2

�
xN�2; �N�2

�
=

"
1 + (1� �)2~�2�2

1 + 1
2 (1� �)2~�2�2

~�

2�
+


2

#
x2N�2 + � xN�2

�
1
2���

1=2

1 + 1
2(1� �)2~�2�2

xN�2�N�2 � �2�2�2=8~�

1 + 1
2(1� �)2~�2�2

� 2
N�2

In the limit � ! 0, these reduce to the static strategy (18) with T = 2� ,
and the static cost U0 = E0 + �V 0 where E0 = E and V0 = V from (20).

If n�N�1 < 0, then our neglect of the sign function in the bid-ask spread
(the � term) is not justi�ed. But the adjustment in response to expected
future changes, ��N�2, is independent of instantaneous holdings xN�2. For
reasonably large portfolios, then, we are justi�ed in assuming n�N�1 > 0.
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k = N� 3 We now are to choose a value of nN�2 based on using informa-
tion available at time N � 3. In doing so, we assume that at the next time
period we will use the optimal strategy n�N�1. We may thus again write

CN�3 =
�
SN�3 � ~SN�2

�
nN�2 +

�
SN�3 � SN�2

�
xN�2 + C�

N�2

=
� �
�
nN�2 + �

�
nN�2 +

�
nN�2 � ��1=2�N�2

�
xN�2 + C�

N�2:

This has two sources of randomness, �N�2 and �N�1, and we must very
carefully assess its risk and reward.

If we write the above formula for C�
N�2 as

C�
N�2 = ax 2

N�2 � bxN�2�N�2 + c� 2
N�2 + �xN�2 � dxN�2�N�1 � e�N�2�N�1

where a; : : : ; e depend on market parameters but not on state variables, then

CN�3 = �xN�3 +
�

�
n 2
N�2 + nN�2xN�2 + ax 2

N�2

� �b+ ��1=2
�
xN�2�N�2 + c� 2

N�2 � dxN�2�N�1 � e�N�2�N�1:

We now substitute our expressions for �k to �nd

CN�3 = �xN�3 +
�

�
n 2
N�2 + nN�2xN�2 + ax 2

N�2

� �
�
b+ �d+ ��1=2

�
xN�2�N�3 + �2

�
c� �e

�
� 2
N�3

� (1� �)
�
dxN�2 + �e�N�3

�
�̂N�1

� (1� �)
��
b+ �d+ ��1=2

�
xN�2 � 2�

�
c� �e

�
�N�3

�
�̂N�2

+ (1� �)2
�
c� �e

�
�̂ 2
N�2 � (1� �)2e �̂N�1�̂N�2:

This expression involves products of the random variables �̂N�1 and �̂N�2.
If we identify the coe�cients as

CN�3 = A + B �̂N�1 + C �̂N�2 + D �̂ 2
N�2 + E �̂N�1�̂N�2;

in which A; : : : ; E depend quadratically on the state variables at time N �3
and on nN�2; xN�2, then we readily evaluate

EN�3

�
CN�3

�
= A + D:

For the variance, we need higher moments of �̂N�2, which are not prescribed
by the simple mean/variance statement we have been making until now.
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We therefore make the following assumption: The independent increments

�̂k have a Gaussian distribution. Then for each k we have E
�
�̂ 3
k

�
= 0 and

E
�
�̂ 4
k

�
= 3, and

VN�3

�
CN�3

�
= B2 + C2 + 2D2 + E2:

We then form UN�3 = EN�3

�
CN�3

�
+�VN�3

�
CN�3

�
; with xN�2 = xN�3�

nN�2, the result is a quadratic in nN�2, whose minimizing value n�N�2 we
can �nd analytically. Unfortunately, the result is too complicated to be
of interest. Further risk-averse solutions will depend on higher and higher
moments of the �̂k and are increasingly delicate and unrealistic.

B.2 Risk-neutral case

We can solve the problem completely if we assume risk-neutrality: � = 0
and hence ~� = 0 in the above formulas. In this case the objective function
is Ek = Ek

�
Ck

�
. The advantage of risk-neutrality is the law of iterated

expectations which gives Ek�1 = Ek�1

�
Ek

�
, so that we do not need to

maintain Ck as an independent variable.
The above formulas simplify to

n�N
�
xN�1

�
= xN�1

E�
N�1

�
xN�1

�
=

 
~�

�
+


2

!
x 2
N�1 + � xN�1

n�N�1

�
xN�2; �N�2

�
=

xN�2

2
� ���3=2

4~�
�N�2

E�
N�2

�
xN�2; �N�2

�
=

 
~�

2�
+


2

!
x 2
N�2 + � xN�2 � 1

2���
1=2�N�2xN�2

� �2�2�2

8~�
� 2
N�2

In general, we look for the optimal strategy and cost in the form

n�N�i+1

�
xN�i; �N�i

�
=

xN�i
i

� fi(�)
���3=2

2~�
�N�i

E�
N�i

�
xN�i; �N�i

�
=

 
~�

i�
+


2

!
x 2
N�i + � xN�i � fi(�) ���

1=2�N�ixN�i

� �2�2�2

4~�

�
gi(�) �

2
N�i + hi(�)

�
:
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We substitute this expression for E� into the recursion relation

EN�i

�
xN�i; nN�i+1

�
= EN�i

n �
SN�i � ~SN�i+1

�
nN�i+1

� �
SN�i � SN�i+1

�
xN�i+1 + E�

N�i+1

�
xN�i+1

�o
;

substitute xN�i+1 = xN�i�nN�i+1, write EN�i
�
�N�i+1

�
and EN�i

�
� 2
N�i+1

�
in terms of �N�i, and minimize over nN�i+1. The result is con�rmation of
the form of the expressions above, along with the recursion relations

fi =
i� 1

i

�
�fi�1 + 1

�
; f1 = 0; f2 =

1
2 ;

gi = �2 gi�1 +
i

i� 1
f 2
i ; g1 = 0; g2 =

1
2 ;

hi = (1� �)2
i�1X
j=1

gj ; h1 = 0; h2 = 0:

If � = 0 then this is exactly the linear strategy and cost. We have the
explicit solution

fi(�) =
(i� 1) + (i� 2)�+ � � �+ 2�i�3 + �i�2

i
=

i� 1� i�+ �i

i(1� �)2

and we easily identify the limiting behavior as i!1:

fi(�)! 1

1� �
; gi(�)! 1

(1� �)2(1� �2)
;

hi(�)

i
! 1

1� �2
: (34)

B.3 Risk-neutral gain due to serial correlation

To assess the value of taking account of serial correlation information, let us
compute the cost, in the presence of serial correlation, of the na��ve strategy
determined as though there were no serial correlation.

Suppose xk is given. We suppose that we choose to ignore serial correla-
tion. In order to compare with the above analytic solutions, we also suppose
that we are risk-neutral, and that the expected drift � is zero. Our trading
strategy will then be the linear strategy

n0
j =

xk
N � k

; x0j =
N � j

N � k
xk; j = k + 1; : : : ; N:

We do not modify this strategy in response to future price movements.
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The expected cost of this program is

E0
k

�
xk
�
= Ek

0
@ xk Sk �

NX
j=k+1

n0
j
~Sj

1
A = xkSk �

NX
j=k+1

n0
j Ek

�
~Sj
�

= xkSk �
NX

j=k+1

n0
j

�
Ek

�
Sj�1

� � � � �

�
n0
j

�
:

With linear permanent impact, we have

Sj�1 = Sk + ��1=2
j�1X

`=k+1

�` � 
�
x0k � x0j�1

�
; j = k + 1; : : : ; N

(the sum is zero if j = k + 1). We readily calculate

j�1X
`=k+1

Ek

�
�`
�
=

j�1X
`=k+1

�`�k�k =
1� �j�k�1

1� �
� �k

so

Ek

�
Sj�1

�
= Sk +

1� �j�k�1

1� �
���1=2 �k � 

�
x0k � x0j�1

�
:

We thus determine the total expected cost

E0
k

�
xk
�
= 1

2x
2
k + � xk +

~�

�

NX
j=k+1

n0
j
2 � ���1=2�k

NX
j=k+1

1� �j�k�1

1� �
n0
j

=

 
~�

(N � k) �
+


2

!
x 2
k + � xk � fN�k(�) ���

1=2 �kxk;

using (34) for fN�k(�). The last term is nonzero if we know � and �k: we
still get some bene�t or cost due to correlated price ucutations, whether
or not we adapt our liquidation strategy to them. This term vanishes if we
take the expectation in the absence of information about �k, and we recover
the risk-neutral cost (10).

The quantity of interest is the di�erence between this cost, and the cost
we could obtain if we not only adapt to the information available at time k,
but if we planned to adapt to future changes as they occur. Setting i = N�k
in the dynamic programming cost, this di�erence is

E0
k

�
xk
� � E�

k

�
xk
�
=

�2�2�2

4~�

�
gN�k(�) �

2
k + hN�k(�)

�



April 8, 1999 Almgren/Chriss: Optimal Execution 48

The expected gain from adapting to correlation is independent of the initial
portfolio size xk.

Suppose that we are very far from the end of our trading period, so N�k
is very large. The term gN�k(�)�

2
k expresses gains near the start of trading

that vanish in a long-time average. For each time period that we are able to
trade, knowledge of serial correlation permits us to extract from the market
an average amount

lim
N�k!1

E0
k �E�

k

N � k
=

�2�2�2

4~�
lim
i!1

hi(�)

i
=

1

(1� �)2
�2�2�2

4~�
: (35)

The gain per unit time is controlled by the relative magnitudes of the pre-
dictable part of price changes ���1=2 and the price impact coe�cient ~�, as
anticipated in Section 4.2.

Result (35) di�ers from the approximate expression (28) of Section 4.2
by a factor 1=(1 � �)2. This correction is close to one when � is near zero;
it is greater than one when � > 0, and it is less than one when � < 0. The
reason for this behavior is easily understood.

In Section 4.2, we considered only single-period gains. For � > 0, antici-
pated gains persist over subsequent periods, enhancing their e�ect compared
to the single-period estimate. Conversely, for � < 0, a possibly substantial
fraction of the �rst-period gain is canceled out on subsequent periods. For
� = 1

2 , the di�erence between these two e�ects is a factor of nine.
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